THE LINEAR INSERTION OF A PROPHAGE INTO THE CHROMOSOME
OF E. COLI SHOWN BY DELETION MAPPING

Naomi C. Franklin, William F. Dove and Charles Yanofsky
Departments of Biological Sciences and Biochemistry,
Stanford University, Stanford, California

Received January 25, 1965

Evidence bearing on the relationship of a prophage to the chromosome of its host bacterium has been lucidly reviewed by Hayes (1964), who considered that a clear decision between attachment and insertion of prophage could not then be made. Just prior to Hayes' summation, Campbell (1962) had formulated a largely theoretical model which would allow for the linear insertion of phage genetic material into a bacterial chromosome, and would account for the permuted gene sequence of the prophage as compared to vegetative phage. The permuted gene sequence had been indicated by comparisons of the gene order in phage recombination experiments and in crosses between bacteria lysogenic for genetically marked λ prophages (Calef and Licciardello, 1960). Evidence in support of the model was subsequently supplied by Campbell (1963) in studies of the segregation patterns of lysogenic heterogenotes, and by Rothman (1965) in studies of Pl cotransduction of galactose and λ markers.

We describe in this paper observations which substantiate Campbell's model by showing that deletions in particular lysogenic bacteria

1Supported by grants from the National Science Foundation and the United States Public Health Service.
2W. F. D. would like to acknowledge an independent proposal of similar experiments by Mr. R. Freedman.
3Public Health Service Postdoctoral Fellow. Present address: McArville Memorial Laboratory, University of Wisconsin.
simultaneously eliminate bacterial genes and segments of a prophage genome. The missing phage segments are overlapping, allowing sequencing of the prophage genes.

The prophage used is a hybrid with the immunity of Ø80 and the host range of λ. Like the Ø80 prophage (Matsushiro, 1963), it resides in E. coli K12 close to the genes which determine the structures of several enzymes essential for the synthesis of tryptophan (Yanofsky, 1960). Mutations of E. coli K12 to T1-resistance (T1\(^R\)) not infrequently result from deletions which extend into the tryptophan (tryp) operon for varying distances (Yanofsky and Lennox, 1959). T1\(^R\) mutants isolated from lysogenic bacteria are also either tryp\(^+\) or tryp\(^-\) deletion, and in addition may lack different amounts of prophage genetic material.

MATERIALS AND METHODS

**Bacteria:** E. coli K12 Ø1485, a non-lysogenic prototroph; a T5-resistant mutant, 1485T5\(^R\) (T5 resistance also confers resistance to T1, Ø80 and Ø80h, but not to λ); a T1-resistant mutant, 1485T1\(^R\) (T1 resistance also confers resistance to Ø80 but not to Ø80h nor to λ); lysogenic derivatives of these bacteria.

E. coli K12 #13101, non-permissive for the λ sus mutants used (Campbell, 1961).

**Phages:** Virulent phages T1 and T5.

Transducing phage Plkc = P1 (Lennox, 1956).

Temperate phage λ wild type, obtained from Dr. D. K. Fraser, and several of its suppressor-sensitive (sus) mutants (Campbell, 1961):

- sus A (= sus 11), sus F (= sus 96b), sus I (= sus 2), sus J (= sus 6),
- sus K (= sus 24), sus L (= sus 63), sus N (= sus 7) and sus R (= sus 5).

Temperate phage Ø80 (Matsushiro, 1963). From a sample kindly sent by Dr. Matsushiro, a single plaque was isolated and high titer stocks were prepared by Dr. R. L. Somerville in this laboratory. A spontaneous mutant Ø80h was selected from Ø80 by its ability to plate on 1485T1\(^R\).
Temperate phage λ and φ80 differ in immunity specificity (1) and in ability to adsorb to various bacteria (2), as well as in plaque type, serological properties, density and other characteristics. Nevertheless, recombination between φ80 and λ occurs (R. L. Somerville, personal communication; Sigler, 1964). From 1485 doubly lysogenic for φ80 and λ a lysate was obtained after UV induction which contained infective phages with different buoyant densities and recombinant characteristics of λ and φ80. By CsCl density gradient centrifugation of the lysate, a phage type was recovered with a density of 1.510 g/ml (slightly denser than λ, considerably denser than φ80), which was able to form plaques on 1485(λ)T1E. This phage was therefore recombinant for the immunity determinant of φ80 and the host range determinant of λ, and is designated φ80,λ. A clear mutant of this hybrid, 1φ80,λ, was used to test immunity to φ80 in bacteria which are T1E. Bacterium 1485 lysogenized with 1φ80,λ was the parental stock for the present studies.

The extent of genetic homology between λ and 1φ80,λ was scanned by performing crosses of 1φ80,λ with various sus mutants. Hybrid 1φ80,λ gave evidence of containing sus A⁺, B⁺, C⁺, E⁺, F⁺, N⁺, P⁺ and R⁺. That the whole left hand arm (sus A through h, Fig. 1) of the hybrid stemmed from λ is suggested by the fact that φ80 itself cannot contribute functions of sus A⁺, B⁺ or C⁺ in complementation tests with λ sus⁻ for these alleles, whereas 1φ80,λ can. Since φ80 can provide sus N⁺, P⁺ and R⁺, as shown in complementation and recombination tests, it is likely that the right-hand arm of 1φ80,λ stems from φ80.

Media: Tryptone broth: 10 g Bacto tryptone, 5 g NaCl, 1 liter H₂O; 12.5 g Bacto agar added for plates; 7 g Bacto agar added for soft agar top layer.

Minimal medium (Vogel and Bonner, 1956) with 0.2% glucose and 0.2% acid hydrolyzed casein (= MCA), supplemented when desired with 20 μ/ml L-tryptophan, solidified with 1.5% Bacto agar.
Induction and superinfection of lysogenic bacteria: Bacteria were grown in MCA + tryptophan or in broth to a concentration of $3 \times 10^8$ cells/ml, UV-irradiated (broth cultures are transferred to saline before irradiation), diluted 2X into broth with superinfecting phage, diluted further 0-100X after adsorption of the superinfecting phage, and allowed to lyse during 2 hours at $37^\circ$C with aeration. The lysates were sterilized with chloroform. For superinfection with $\lambda$, the bacteria must be starved by aerating in 0.01 M MgSO$_4$ at $37^\circ$C for 40 minutes before UV irradiation.

RESULTS

Initially it was observed in 1485($\Phi 80^c + \lambda$) that Tl$^+$ mutants which simultaneously suffered deletion of tryp genes of the bacterium also occasionally became defective lysogens: the bacteria were still immune to $\Phi 80$; however, few if any infective phage particles were released. A similar observation has been made in E. coli B($\lambda^c + \Phi 80$) (Signer, in preparation). This situation was investigated further.

Tl$^+$ mutations occur spontaneously in E. coli at a frequency of $10^{-6}$ to $10^{-7}$. A large number of Tl$^+$ mutants were isolated, some of which required tryptophan. To assure that each mutant was the result of an independent mutational event, the following procedure was employed. A series of broth culture tubes was inoculated with 1485($\Phi 80^c + \lambda$) to a concentration of $10^3$ cells/ml. These were grown with shaking at $37^\circ$C to $4 \times 10^8$ cells/ml. All these initial sub-cultures were shown to produce infective phage in quantity. From each of twenty individual cultures, about $10^9$ bacteria were spread on broth-agar with $10^9$ Tl phages. Of the Tl$^+$ survivors, those mutated at the Tl-receptor gene adjacent to tryp (as opposed to the Tl-T5-receptor gene unlinked to tryp) were recognized by their small colony size. These were purified by streaking twice, and were tested for their ability to produce infective phage. They were also tested for immunity to $\Phi 80$ by spot testing with $\lambda^c$ $\Phi 80^+$. The Tl$^+$ tryp$^-$
colonies were located by their ability to grow when replicated to MCA agar (tryptophan-free); they constitute about 5% of the Tl<sup>R</sup> mutants. Tl<sup>R</sup> mutants are considered to represent independent mutational events if they arise in different subclones, or if they differ from the other Tl<sup>R</sup>'s from the same tube in any of the characteristics tested (Table I).

<table>
<thead>
<tr>
<th>Trypt +</th>
<th>Trypt -</th>
</tr>
</thead>
<tbody>
<tr>
<td>active lysogenic</td>
<td>15</td>
</tr>
<tr>
<td>immune defective</td>
<td>15</td>
</tr>
<tr>
<td>not immune</td>
<td>0</td>
</tr>
</tbody>
</table>

From the independent Tl<sup>R</sup> mutants of 1485(680<sup>h</sup> +λ<sup>+</sup>), 33 isolates, immune-defective or non-immune, were selected for further study of the amount of prophage material that was retained. The following properties were examined.

1) Rare production of infective phage. The parental strain and each mutant clone was grown in MCA + tryptophan to 2 x 10<sup>8</sup> cells/ml, UV-irradiated, mixed 1:1 with broth, shaken at 37°C for 3 hours, and sterilized with chloroform. Although no lysis was evident, some Tl<sup>R</sup> clones did produce infective phages in small amounts (about 10<sup>-3</sup> X normal yield of 680<sup>h</sup> +λ<sup>+</sup>). The plaques formed on 1485 were weakly centered, indistinguishable from those of 680<sup>h</sup> +λ<sup>+</sup>, indicating normal phage growth. Nevertheless, lysogenic clones could not be derived from these plaques. A search for more defective phage types by plating on UV-induced 1485(λ) was not successful. Lysates containing the non-lysogenizing phages were able to transduce the tryp A gene (10<sup>-3</sup> transductants per plaque forming phage); the transductants, though initially immune to 680<sup>h</sup> +λ<sup>+</sup>, became sensitive after restreaking. These sensitive tryp<sup>+</sup> clones did not yield high-frequency transducing lysates, even if superinfected with 680, indi-
cating that transduction by lysogenization cannot occur with these lysates.

2) Ability to contribute the $h^{\lambda}$ gene. The parental culture and the
$Tl^R$ mutants were UV-irradiated and superinfected with $\phi 80_{h^\lambda}$ at a multi-
plicity of infection (moi) = 5. Lysates were tested for presence of the
$h^{\lambda}$ allele from $i^{\phi 80_{h^\lambda}}$ prophage by spot testing or plating on 1485TS$^{R}$,
which can adsorb phage with $h^{\lambda}$ phenotype, but not $h^{\phi 80}$.

3) Ability to contribute $i^{\phi 80}$. The parental strain and its $Tl^R$
mutants were UV-induced and superinfected with $\lambda$ at moi = 3, or with
$sus^{-}$ mutants of $\lambda$ (see 4). Lysates were tested for the presence of
infected phage with the $i^{\phi 80}$ gene by plating on 1485($\lambda$).

4) Ability to contribute $sus^{+}$ alleles of $\lambda$ sus $A^{-}$, $E^{-}$, $I^{-}$, $J^{-}$, $K^{-}$,
$L^{-}$, $N^{-}$, or $R^{-}$. Strain 1485($i^{\phi 80_{h^\lambda}}$) and its $Tl^R$ mutants were UV-irra-
diated and superinfected at moi = 1 with each of several $sus^{-}$ mutants of
$\lambda$. Lysates were assayed for the presence of $sus^{+}$ infective phage by
plating on a non-permissive bacterium, W3101. These lysates were also
tested for the presence of infective phage with $i^{\phi 80}$ by plating on
1485($\lambda$).

The presence of $sus^{+}$ alleles in defective prophages can be screened
easily by a quick spot test procedure (Campbell, 1964). Non-permissive
W3101 is poured in soft agar onto broth-agar plates. The defective lyso-
genic bacteria to be tested are spotted over the surface. A series of
$\lambda$ sus$^{-}$ mutants ($10^8$ phage/ml) is then spotted over the defective bacteria,
and the plates are UV-irradiated with 1/8 inducing dose. Any infective
sus$^{+}$ recombinant phages will be detected by lysis of W3101. Control
spots are necessary on W3101 of each defective lysogenic bacterium alone,
and of each $\lambda$ sus$^{-}$, alone or with 1485; the last test is needed because
growth of $\lambda$ sus$^{-}$ on permissive bacteria permits a certain accumulation of
sus$^{+}$ revertants.

The characteristics of the defective $Tl^R$ mutants of 1485($i^{\phi 80_{h^\lambda}}$)
as shown by the above tests are given in Table II. On the basis of dele-
tion endpoints, an unambiguous linear map can be derived for most of the
Table II

<table>
<thead>
<tr>
<th>Infective Average Burst Size</th>
<th>Markers Detected or Recovered</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\phi 80^{-}$ $\phi 80^{+}$</td>
</tr>
<tr>
<td>4-20</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\phi 455$ ($\phi 80$, $\phi 80^{+}$)</th>
<th>$\phi 455$ $\phi 80^{-}$</th>
<th>$\phi 80^{+}$ $\phi 80^{-}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\phi 80^{-}$ $\phi 80^{+}$</td>
<td>$\phi 80^{+}$ $\phi 80^{-}$</td>
</tr>
<tr>
<td></td>
<td>$\phi 80^{-}$ $\phi 80^{+}$</td>
<td>$\phi 80^{+}$ $\phi 80^{-}$</td>
</tr>
<tr>
<td></td>
<td>$\phi 80^{-}$ $\phi 80^{+}$</td>
<td>$\phi 80^{+}$ $\phi 80^{-}$</td>
</tr>
<tr>
<td></td>
<td>$\phi 80^{-}$ $\phi 80^{+}$</td>
<td>$\phi 80^{+}$ $\phi 80^{-}$</td>
</tr>
<tr>
<td></td>
<td>$\phi 80^{-}$ $\phi 80^{+}$</td>
<td>$\phi 80^{+}$ $\phi 80^{-}$</td>
</tr>
<tr>
<td></td>
<td>$\phi 80^{-}$ $\phi 80^{+}$</td>
<td>$\phi 80^{+}$ $\phi 80^{-}$</td>
</tr>
<tr>
<td></td>
<td>$\phi 80^{-}$ $\phi 80^{+}$</td>
<td>$\phi 80^{+}$ $\phi 80^{-}$</td>
</tr>
<tr>
<td></td>
<td>$\phi 80^{-}$ $\phi 80^{+}$</td>
<td>$\phi 80^{+}$ $\phi 80^{-}$</td>
</tr>
<tr>
<td></td>
<td>$\phi 80^{-}$ $\phi 80^{+}$</td>
<td>$\phi 80^{+}$ $\phi 80^{-}$</td>
</tr>
<tr>
<td></td>
<td>$\phi 80^{-}$ $\phi 80^{+}$</td>
<td>$\phi 80^{+}$ $\phi 80^{-}$</td>
</tr>
<tr>
<td></td>
<td>$\phi 80^{-}$ $\phi 80^{+}$</td>
<td>$\phi 80^{+}$ $\phi 80^{-}$</td>
</tr>
<tr>
<td></td>
<td>$\phi 80^{-}$ $\phi 80^{+}$</td>
<td>$\phi 80^{+}$ $\phi 80^{-}$</td>
</tr>
<tr>
<td></td>
<td>$\phi 80^{-}$ $\phi 80^{+}$</td>
<td>$\phi 80^{+}$ $\phi 80^{-}$</td>
</tr>
<tr>
<td></td>
<td>$\phi 80^{-}$ $\phi 80^{+}$</td>
<td>$\phi 80^{+}$ $\phi 80^{-}$</td>
</tr>
<tr>
<td></td>
<td>$\phi 80^{-}$ $\phi 80^{+}$</td>
<td>$\phi 80^{+}$ $\phi 80^{-}$</td>
</tr>
<tr>
<td></td>
<td>$\phi 80^{-}$ $\phi 80^{+}$</td>
<td>$\phi 80^{+}$ $\phi 80^{-}$</td>
</tr>
</tbody>
</table>
Vegetative λ:

<table>
<thead>
<tr>
<th>galactose operon</th>
<th>biotin operon</th>
</tr>
</thead>
<tbody>
<tr>
<td>sus A B C D E F (I J K L)</td>
<td>N P R</td>
</tr>
<tr>
<td>h b2 l i</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tl receptor operon</th>
<th>tryp operon</th>
</tr>
</thead>
<tbody>
<tr>
<td>sus N P R A F (I K)</td>
<td>N</td>
</tr>
<tr>
<td>h &quot;b2&quot;</td>
<td></td>
</tr>
<tr>
<td>gene A B C D</td>
<td></td>
</tr>
</tbody>
</table>

Vegetative \(\phi\)04+λ: unknown

Figure 1. The genetic maps of vegetative and prophage λ (Campbell, 1961; Jordan, 1964; and Rothman, 1965) compared to prophage \(\phi\)80+λ, showing relationships of the prophage genes (-----) to the genes of E. coli (- - - -).

**Tryptophan operon:** gene D = anthranilate synthetase, includes operator functions (Hatsubito \textit{et al.}, 1962; Somerville and Yanofsky, 1964)
- gene C = indole glycerol phosphate synthetase
- gene B = B protein of tryptophan synthetase
- gene A = A protein of tryptophan synthetase

**Galactose operon:** gene O = operator (Adler and Kaiser, 1963; Buttin, 1963)
- gene E = epimerase
- gene T = transferase
- gene K = kinase

That a defective prophage resulting from TIR mutation in \(\phi\)80+λ (-----)
tryp genes could be confirmed by PI transduction. Phage PI grown on TlR
defective 59, tryp B+A+del, was used to transduce a tryp B− recipient
(point mutant). The B+ transductants, selected by their ability to util-
ize indole in place of tryptophan, were of two types only: 10% B+A+Tl8-
G308, 90% B+A+TlRØ80 immune. Thus immunity to Ø80 was cotransduced with
B+, in close linkage with tryp A+del and TlR. The absence of recombina-
tion between tryp A−del, TlR and immunity to Ø80 is one criterion for con-
sidering that these three were lost simultaneously by deletion.

The information in Table II does not permit us to distinguish
between several of the more defective prophages: defective lysogenic
TlR mutants Ø17, 21 and 30, which all contribute genes sus A−R−N+ and
Ø30 upon superinfection with λ sus−, and mutants Ø9, 18 and 15 which
do not contribute any of the above mentioned genes, although they show
immunity to Ø80. Mutant Ø2 is intermediate between these two groups
in that, unable to contribute sus A+ and immune to Ø30, it provides
sus R+ and N+ poorly. When TlR mutants Ø17, 21 and 30 are superin-
fected with λ sus N− or R−, substantially more Ø30 sus R+ are recovered
than Ø30 sus N+, showing the closer linkage of sus N to Ø than sus R to
Ø, as in phage λ itself. The order of sus R, sus N and Ø, however, is
not given by these experiments.

DISCUSSION

A large proportion of the TlR mutants of 1435(Ø30, +λ) become defec-
tive lysogens; i.e., immune to Ø30, but unable to yield infective phages
in normal amount, if at all. When these defective prophages are tested
for their ability to contribute Ø30, +λ and various sus+ alleles by recombination, it is found that the defective prophages lack varying
amounts of their parental genome. [A partially deleted λ prophage has
recently been described by Fischer-Fantuzzi and Calef (1964).] The dele-
tions of Ø30, +λ constitute a coherent series, allowing the interpreta-
tion that deletions of the Tl-receptor bacterial gene can extend for
varying distances into a prophage whose chromosomal location is adjacent to this gene. The deletions can terminate at various points within the prophage. Therefore, the prophage must be linearly inserted into the bacterial chromosome. This finding of linear prophage insertion is supported by recent work showing increased recombination frequencies between two bacterial markers after lysogenization with a prophage whose chromosome location lies between the two markers studied (Rothman, 1965; Signer, in preparation).

It was known previously that mutation to T1 resistance in E. coli occasionally results in the simultaneous loss of tryptophan-synthesizing ability (Anderson, 1946; Yanofsky and Lennox, 1959). Physiological and genetic studies of these T1<sup>F</sup> tryp<sup>-</sup> mutants indicated that deletions of the bacterial genes had occurred. In the present study it is seen that T1<sup>F</sup> mutants may simultaneously lose prophage genes as well as tryp functions, supporting the interpretation that the prophage genes are also deleted. On the other hand, loss of tryp functions and prophage genes may occur independently in conjunction with mutation to T1 resistance, showing that tryp and prophage must lie on opposite sides of the T1-receptor gene. This gene order has been independently deduced (for prophage φ80) by transduction mapping with phage P1. The deletions show great variability in their points of termination on either side of the T1-receptor gene, though in K12 strains they rarely extend beyond the tryp operon on the one side, or beyond the prophage immunity gene on the other. Deletions extending into the prophage are about ten times more frequent than those affecting tryptophan prototrophy.

The coherent set of T1<sup>F</sup> deletions entering the <sup>λ</sup> prophage allows mapping of that prophage in a manner analogous to the deletion mapping described by Benzer (1961) and Campbell (1961). The gene order is found (Fig. 1) clearly the permutation of the vegetative λ gene order which has already been described for prophage λ by Campbell (1963) and by Rothman (1965). Although we do not know the order of genes in vege-
tative $\lambda^+_{\text{h}}$, we think it likely that it is the same as the order in vegetative $\lambda$. Certainly homology between $\lambda$ and $\lambda^+_{\text{h}}$ is revealed by recombination between several of their genes.

Deletion mapping of prophage $\lambda^+_{\text{h}}$ can be used to order some of the $\lambda$ genes which could not previously be ordered. The $\text{sus}^-$ alleles $I$, $J$, $K$ and $L$ are all closely linked to $\text{h}$, all five being regularly replaced by $\text{gai}$ in $\lambda$ $\text{cg}$ (Arber, Kellenberger and Weigle, 1957; Campbell, 1961). Results here show that the order of loci is $(\text{KL}) I J \text{h}$. This location for $\text{sus} J$ is consonant with the finding that $\text{sus} J$ mutants are deficient in antiserum-sensitive antigens of $\lambda$ (W. F. Dove, unpublished).

Among the $\text{Tl}^+$ mutants, a class of defective lysogens is found in which the prophage retains the $\text{h}^+\lambda$ gene and all $\text{sus}$ genes tested, yet loses almost all ability to produce infective phage particles. A deletion of prophage genetic material at the $\text{h}$ terminus is therefore indicated. This class of defective lysogen produces a few infective particles with an average burst size of 0.01, showing that an event of low efficiency is able to produce infectious phage. But the few phages produced, though apparently able to replicate normally, are unable to lysogenize. This behavior is ostensibly similar to that of the $\lambda b2$ mutant and the $\lambda l$ mutant, both of which are associated with deletions of the $\lambda$ chromosome (Kellenberger, Zichichi and Weigle, 1961). Furthermore, the terminal position of our deletions in apparent proximity to $\text{h}$ is in accord with the known position of $b2$, linked to $\text{h}$ (Kellenberger et al., 1961), lying between $l$ and $\text{h}$ on the vegetative map of $\lambda$ (Jordan, 1964). It appears, therefore, that a terminal prophage deletion may be the source of $b2$-type mutants.

The fact that prophages with terminal deletions are able to reconstitute replicating though defective structures is of importance to Campbell's (1962) model for lysogenization and induction of temperate prophages. This model predicts that in a lysogenic bacterium the prophage is bounded by duplicated regions which arose during an integra-
tional recombination between homologous regions of the phage and the parental bacterium. Recombination between such duplicated regions would allow escape of the prophage from the bacterial chromosome. A deletion of part of the member of the duplication proximal to the T1-receptor gene might account for reduced frequency of phage release. But it would not account for the release of an incomplete phage genome. Thus the incomplete phages would arise as exceptions to the above model, just as would transducing phage particles, which also are found in lysates of these terminally deleted strains.

The present experiments indicate that prophage fragments remaining after deletions even more drastic than the terminal deletion type can replicate after induction. Prophages which have suffered deletions extending beyond gene h are still, upon superinfection, able to contribute sus K+ or sus A+ with an efficiency near to that of a non-deleted prophage. Thus prophages deleted even beyond the terminus may be able to replicate normally.

When the deletion extends into sus A, however, none of the distal markers can be recovered, although the immunity function may still be in evidence. This may simply reflect limited homology between the distal prophage half, stemming from φ30, and that of the superinfecting λ test phage. But it is tempting to speculate that the boundary observed beyond prophage sus A has greater significance, since sus A marks an end of the vegetative phage.

Finally there is interest in the relationships of the prophage genes to the bacterial genes. In comparing λ and φ30, +λ prophage maps (Fig. 1), it is seen that the biotin gene of E. coli bears the same relationship to the λ prophage as does the tryp operon to φ30, +λ. It is noteworthy that respective non-defective transducing phages can be recovered carrying these bacterial markers (Hollman, 1963; Matsushiro et al., 1964), but not the galactose genes. Furthermore, the tryp and gal operons read in the same direction (right to left as written) relative to the order
of the adjacent prophage markers. If the prophages are considered as having a polarity, reading from early functions at the sus N end to late functions at the h end, then the prophage polarity is opposite, in both cases, to the operon polarity of the bacterial genes. The many implications of these relationships remain to be examined.

ACKNOWLEDGMENT

The work reported above is superficially far removed from the gene-enzyme relationships in Neurospora which first occupied me as a graduate student under Dave Bonner. His lack of inhibition fostered mobility in terms of experimental systems and approach. Yet the interest that he inspired in the examination of genetic phenomena is evident. A veteran of much excellent guidance through subsequent years of study, I still count myself most fortunate to have started in research with Dave, to have witnessed over many years his extraordinary quality and endearing nature. N. C. F.

REFERENCES

Lennox, E. S., Virology 1, 190 (1956).