Somatic Mutational Mechanisms Involved in Intestinal Tumor Formation in Min Mice

Alex R. Shoemaker, Cindy Luongo, Amy R. Moser, Laurence J. Marton, and William F. Dove

ABSTRACT

We have demonstrated previously that intestinal tumor formation in B6 Min/+ mice is always accompanied by loss of the wild-type adenomatous polyposis coli (Apc) allele and that intestinal tumor multiplicity in B6 Min/+ mice can be significantly increased by treatment with a single dose of N-ethyl-N-nitrosourea (ENU). Here, we show that some tumors from ENU-treated Min/+ mice can form without complete elimination of Apc*. At least 25% of these tumors acquired somatic Apc truncation mutations. Interestingly, some ENU-induced tumors demonstrated loss of the Apc* allele marker examined by the quantitative PCR assay used here. Using two methods of mutation detection, we identified no Apc mutations in at least 12% of the tumors from ENU-treated B6 Min/+ mice. Finally, no H- or K-ras-activating mutations were detected in intestinal tumors from either untreated or ENU-treated Min/+ mice. The majority of somatic human APC mutations in intestinal tumors lead to APC truncation. Our results demonstrate that somatic Apc truncation mutations also frequently occur in ENU-induced intestinal tumors in Min mice.

INTRODUCTION

Mutation of the APC gene encodes a 2843-amino acid protein that contains several potentially important functional domains (2–4). These include an NH2-terminal region involved in homodimerization (15, 16), a COOH-terminal region involved in microtubule association (17, 18), and two centrally located regions that bind β-catenin (19–21). Catenins modulate cell-cell adhesion functions, in part via interaction with cadherins (22, 23).

The vast majority (>95%) of both germ-line and somatic APC mutations result in premature truncation of the APC polypeptide (5–8, 24). Most of these mutations occur within the first 1500 codons of the gene (5–8, 24). Germ-line mutations in APC tend to be scattered throughout the first half of the gene, although there appear to be two “hot spots” at codons 1061 and 1309 (5–6, 25). Approximately two-thirds of identified somatic mutations are located in a MCR between codons 1286 and 1513 (5–7). The high frequency of APC mutations in the MCR suggests that mutations in this region of the gene may be more efficient at inducing tumor formation than mutations elsewhere in the gene (4). This idea is supported by the fact that germ-line APC mutations in the MCR frequently result in more severe polyposis (4, 6, 26).

Mutational activation of the ras oncogene has also been implicated as an important event in human intestinal cancer (27, 28). In particular, mutation of K-ras seems to be correlated with the development of large, dysplastic adenomatous polyps in humans. It has been shown that more than 50% of dysplastic polyps larger than 1.0 cm in size contain K-ras mutations, whereas only 9% of adenomas less than 1.0 cm have ras mutations (28).

We have been investigating intestinal neoplasia in the Min (multiple intestinal neoplasia) mouse, a model for human intestinal cancer (29, 30). Min is a nonsense mutation at codon 850 of Apc, the mouse homolog of human APC (30). The mouse Apc and human APC coding sequences are 86 and 90% identical at the nucleotide and amino acid levels, respectively (30). On the sensitive C57BL/6J (B6) background, mice heterozygous for ApcMin can develop more than 50 adenomas throughout the entire intestinal tract and rarely live beyond 150 days of age (29).

It has been demonstrated that spontaneously arising intestinal tumors in B6 Min/+ mice lose the wild-type allele of Apc, most commonly by whole chromosome loss (31–33). The somatic mutational mechanism(s) involved in intestinal tumor formation in Min/+ mice can be altered through the use of somatic mutagenesis and manipulation of the genetic background (33). Using a quantitative PCR assay that examines a 155-bp region surrounding the Min mutation, Luongo and Dove (33) found that a small number of intestinal tumors from (129/SvJ × B6)F1,Min/+ and (Mus musculus castaneus (CAST) × B6)F1,Min/+ mice retained at least this portion of the Apc* allele. Similar results were obtained for intestinal tumors analyzed from γ-irradiated (AKR/J × B6)Min/+ mice (33). It is presently unknown whether any of these tumors acquired more subtle Apc mutations.

The role of activated ras in Min-induced tumorigenesis is unclear. Crosses of B6 Min/+ mice to transgenic mice expressing an activated human K-ras allele did not result in increased intestinal tumor multiplicity or rate of progression (34). In contrast to this result, D’Abaco et al. (35) reported that expression of an activated H-ras allele in SV40-immortalized Min/+ intestinal epithelial cells can induce tumor formation in nude mice, apparently without loss of the remaining wild-type Apc allele.

In this report, we examine in more detail the somatic mutational events involved in intestinal tumor formation in Min mice. We demonstrated previously that somatic mutagenesis of B6 Min/+ mice with the alkylating agent ENU leads to significant increases in intestinal tumor multiplicity (36). Here, we show that these ENU-induced tumors in Min/+ mice can form without complete deletion of Apc*.

These tumors have been examined for the presence of intragenic...
somatic Apc mutations and for activating mutations of the ras proto-
oncogene.

MATERIALS AND METHODS

Mice. All mice were bred at the McArdle Laboratory for Cancer Research. B6 and AKR mice were originally purchased from The Jackson Laboratory (Bar Harbor, ME). The B6-Min pedigree is maintained by crossing B6 Apc+/Apc× (+/+) females with B6 Apc+/Apc× (Min+/+) males. All B6-Min mice used in these experiments were from the 24th to 32nd backcross generations to B6. (AKR × B6)F1 Min+/+ mice were produced by mating AKR females with B6 Min+/+ males. Animals were genotyped for the presence of the Min mutation by the PCR-based assay described previously (37). Somatic treatment of mice with ENU was performed as described previously (36, 38, 39). B6 Min+/+ mice were given a single i.p. injection of ENU at 5–35 days of age and then sacrificed approximately 65 days after treatment. Untreated B6 Min+/+ mice were sacrificed at an age that corresponded to the final age of the ENU-treated mice (i.e., 70–100 days of age).

Tissue Sample Collection. Isolation and dissection of the intestinal tract were carried out as detailed previously (36). Intestinal tumors and regions of normal intestinal epithelium were collected from (AKR × B6)F1 Min+/+ mice, fixed in formalin, embedded, and sectioned as described by Luongo et al. (31). Intestinal tumor and normal intestinal tissue samples were collected from ENU-treated and untreated B6 Min+/+ mice by three distinct methods. One set of 134 tumors and 54 normal tissue samples collected from 30 Min+/+ animals was fixed in formalin and processed as described for the F1 mice. A second set of 90 tumors and 18 normal tissue samples was collected from 15 Min+/+ mice. Tumor samples were dissected from the intestine to be as free of normal tissue as possible. Dissection tools were cleaned between samples with rinsing with bleach. Tumors and normal tissue samples were quickly frozen in OCT embedding compound (Miles Scientific, Naperville, IL) over liquid N2 vapor. A final set of 75 tumors and 28 normal tissue samples was collected from 17 Min+/+ mice. Tumors were dissected as described above. In this case, each tumor or normal tissue sample was cut in half with a new razor blade. Tissue pieces were then placed in separate tubes and immediately frozen in liquid N2. One sample was used for isolation of DNA, and the corresponding sample was used for isolation of RNA.

Nucleic Acid Isolation. Formalin-fixed samples were sectioned at 10-μm thickness, and every tenth section was stained with H&E for histological assessment. DNA was prepared from scraped tissue obtained from unstained sections, as described previously (31). Samples embedded in OCT were also sectioned at 10-μm thickness, and every tenth section was stained with H&E. Intervening sections (approximately 30 per sample) were collected directly into an Eppendorf tube containing 500 μl of a digestion buffer consisting of 500 μg/ml proteinase K, 1% SDS, 500 mM Tris (pH 9.0), 20 mM EDTA, and 10 mM NaCl (40). Samples were homogenized by vortexing and were then incubated overnight at 55°C. The samples were then extracted with phenol-
chloroform and precipitated with ethanol. The DNA was resuspended in a final volume of 20 μl of water. DNA was prepared from freshly frozen samples by resuspending the tissue in 500 μl of the digestion buffer described above. Samples were homogenized with a micropestle (Kontes, Vineland, NJ) and then further sheared by pulling the homogenate through 18 and 25 gauge needles. Samples were incubated overnight at 55°C, extracted with phenol-
chloroform, precipitated, and finally resuspended in 25 μl of water. RNA was prepared from freshly frozen samples by the acid-phenol-chloroform method, scaled down for use in Eppendorf tubes (41). Samples were homogenized in guanidinium buffer with micropestles and syringes as de-
scribed for DNA preparation. RNA was resuspended in 25 μl of diethyl
pyrocarbonate-treated water.

Apc Allelic Loss Assays. The relative ratios of the Apc× to Apc×alleles were determined by a quantitative PCR assay (31). This assay uses modified PCR primers that flank the Apc mutation. Amplification of the wild-type Apc allele results in a 155-bp PCR product with two HindIII sites, whereas the 155-bp product from the Min allele contains only one HindIII site. HindIII digestion of PCR-amplified DNA from Min/+ heterozygous tissue results in a 123-bp product from the Apc+/+ allele and a 144-bp product from the Apc× allele (31). The Apc×/Apc× ratio was determined by quantitating RTPCR-amplified products with ImageQuant software (Molecular Dynamics, Sunnyvale, CA). This assay has been shown to be linear over a wide range of input DNA quantities (31). However, even with stringent techniques to exclude normal cell contamination from tumor samples, some Apc× signal is almost always seen in tumor samples (31). Numerous comparisons of normal and intestinal tumor samples have allowed us to conclude that an average Apc×/Apc×ratio of less than or equal to 0.30 is indicative of extensive Apc× loss (31). Samples were assayed at least twice, independently. Only samples that gave repeated values within 10% of each other were included in the results.

Analysis of Apc Truncating Mutations. Truncating mutations within the Apc ORF were identified by a modification of an assay for IVSP described previously (32, 42, 43). Exon 15 of Apc was analyzed by producing four overlapping PCR products (segments 2–5) by amplification of DNA obtained from OCT-embossed or freshly frozen tissue samples. With one exception, the PCR primers used for amplification of segments 2–5 were designed previously (32). The sequence of the reverse primer used for segment 3 was 5’CTGCCCTTTGAGAAGTTGATCG-3’, which corresponds to nucleo-
otides 5053–5078 of the mouse Apc ORF (30). Each PCR for segments 2–5 was done in a 50 μl reaction volume with 2–3 μl of sample DNA and contained 0.36 μM forward primer, 0.3 μM each dNTP, 10 mM Tris-HCl (pH 9.0 at 25°C), 50 mM KCl, 0.1% Triton X-100, and 2 units of Taq polymerase. For segment 2, each PCR contained 1.12 μM reverse primer and 1.57 mM MgCl2; for segment 3, each PCR contained 0.82 μM reverse primer and 3.0 mM MgCl2; for segment 4, each PCR contained 1.0 μM reverse primer and 2.5 mM MgCl2; and for segment 5, each PCR contained 1.0 μM reverse primer and 3.0 mM MgCl2. All segment 2–5 PCR products were performed under the following conditions: 95°C for 3 min followed by 35 cycles of 95°C for 30 s, 55°C for 2 min, and 70°C for 3 min, and finally one cycle of 70°C for 5 min. Amplification of exons 1–14 of Apc was performed via RT-PCR with RNA obtained from freshly frozen tissue samples. The region of Apc covering exons 1–14 was amplified as either one full-length product (segment 1) or two smaller, overlapping products (segments 1A and 1B). RT was performed with 1–5 μg of total RNA in a 30-μl reaction with Superscript II reverse transcriptase (Life Technologies, Inc., Gaithersburg, MD), according to the manu-
facturer’s protocol. The Apc-specific primer used to prime the RT reaction: 5’GCCACACAAAGGATCTGGC3’, corresponds to nucleotides 2723–2741 of Apc (30). Four μl of each RT reaction were used directly in each 50-μl PCR. The primers for segment 1 have been described previously (32). The forward primer for segment 1A was the same as that for segment 1. The reverse primer for segment 1B was 5’GGATCCGACTGTCCTGAGAAGCTTCTGGGGTGGG3’. The Apc-specific portion of this primer (in italics) corresponds to nucleotides 1244–1263 (30). All RT-PCR products contained 1.12 μM forward primer, 0.38 μM reverse primer, 0.2 μM each dNTP, 2.7 mM MgCl2, 10 mM Tris-HCl (pH 9.0 at 25°C), 50 mM KCl, 0.1% Triton X-100, and 3 units of Taq polymerase. All RT products were PCR-amplified under the following conditions: 95°C for 3 min, followed by 40 cycles of 95°C for 30s, 60°C for 2 min, and 70°C for 3 min, and finally one step at 70°C for 5 min. The quality and quantity of all PCR products were assessed by running 5 μl of each reaction on 1% agarose gels. Products of successful PCR amplifications were extracted with phenol-chloroform and precipitated with ethanol, and 50–100% of each PCR amplifier was used in a 25-μl cooled in vitro transcription-translation reaction following the manufacturer’s protocol (Promega Corp., Madison, WI). [35S]Methionine-labeled polypeptides from these reactions were analyzed by 8–14% SDS-PAGE. Gels were fixed, dried, and then exposed to film and/or PhosphorImager screens.

Apc Sequencing. Several of the Apc truncations identified by the IVSP assay were further characterized by sequence analysis. Sequencing was performed by cycle sequencing of PCR products with either 32P-labeled primers and the dsDNA Cycle Sequencing System (Life Technologies, Inc.) or with dye-labeled primers and the Dye Primer Cycle Sequencing System (Perkin-
Elmer Corp., Foster City, CA). Cycle sequencing conditions were as described by each manufacturer. In both cases, sequencing products were analyzed by electrophoresis through 6% denaturing polyacrylamide gels. Prior to sequenc-
ing, PCR products were purified by either the QIAquick PCR purification method (Qiagen Inc., Chatsworth, CA) or MicroSpin S-400 HR columns (Pharmacia Biotech, Uppsala, Sweden). Internal sequencing primers were designed on the basis of the approximate location of the individual truncations. For dye primer sequencing, M13 tail primers were used for the PCR such
that dye-labeled-21M13 or M13Rev primers could be used in the cycle sequencing reactions.

Ras Mutational Analyses. Codons 12, 13, and 61 of both K- and H-ras were examined for mutations via dye primer cycle sequencing of PCR products, as described above. The forward and reverse primers used for PCR amplification were as follows: K-ras exon 1 (covering codons 12 and 13), 5'—TTATGTTAG-GCTGCTGAA-3' and 5'—GAGGCTCTCATGTA-3'; K-ras exon 2 (covering codon 61), 5'—TTCGACATCTTACGGA-3' and 5'—AACCAC-CTTAAATGTTGAAT-3'; H-ras exon 1, 5'—GAGCAATACAGGTGGT-3' and 5'—AGGAGCATCTAGCC-3'; H-ras exon 2, 5'—AACAGGGTGT-CATTGATG3' and 5'—ATGATGTTCCAGAGCTTG-3'. In each case, one of the forward or reverse primers was M13 tailed for subsequent cycle sequencing. For K-ras PCR amplification, each reaction contained 0.25 μM each primer, 0.25 mM each dNTP, 2.5 mM MgCl₂, 10 mM Tris-HCl (pH 9.0 at 25°C), 50 mM KCl, 0.1% Triton X-100, and 0.75 unit of Taq polymerase. Each PCR was amplified under the following conditions: 94°C for 3 min, followed by 30 cycles of 94°C for 30s, 60°C for 2 min, and 72°C for 2 min, and finally one step at 72°C for 5 min. For H-ras amplifications, each reaction contained 0.38 μM each primer, 0.25 mM each dNTP, 10 mM Tris-HCl (pH 9.0 at 25°C), 50 mM KCl, 0.1% Triton X-100, 0.75 unit of Taq polymerase, and either 1.5 mM (exon 1) or 0.8 mM (exon 2) MgCl₂. The amplification profile for H-ras was the same as for K-ras except that the annealing temperature was 45°C instead of 40°C. In addition, the hot start technique was used for K- and H-ras amplifications (44).

RESULTS

Somatic Apc⁺ Allele Loss in Intestinal Tumors from ENU-treated B6 Min/⁺ Mouse. We examined intestinal tumors from ENU-treated B6 Min/⁺ mice for Apc⁺ loss using a quantitative PCR assay (see "Materials and Methods" and Ref. 31). This assay tests for the presence or absence of nucleotides 2524–2679 from both the ApcMin and Apc⁺ alleles. For these experiments, DNA was prepared from scraped sections of formalin-fixed intestinal tissue. This method allows for relatively stringent exclusion of normal intestinal cells from the tumor DNA samples (31).

A summary of the analysis of Apc allelic status in intestinal tumors from untreated and ENU-treated B6 Min/⁺ mice is presented in Table 1. The average number of ENU-induced intestinal tumors was calculated by subtracting the average tumor multiplicity for untreated mice (29.2) from the average total tumor multiplicity for each treatment group. Under the assumption that all spontaneously arising tumors lose Apc⁺ (see Ref. 31), the estimated proportion of ENU-induced tumors that retained the Apc⁺ marker was calculated by dividing the predicted total number of tumors showing Apc⁺ retention by the number of putatively ENU-induced tumors (Table 1).

Some of the tumors from B6 Min/⁺ mice treated with ENU at all five ages retained the Apc⁺ allelic marker (Table 1). For mice treated at either 15–19 or 30–35 days of age, nearly 100% of the ENU-induced tumors were predicted to retain Apc⁺. However, for mice treated at the other three ages, some putatively ENU-induced tumors showed Apc⁺ retention, and others showed Apc⁻ loss (Table 1).

ApoC Truncation Mutations in Intestinal Tumors from ENU-treated B6 Min/⁺ Mice.** The results from the analysis of Apc allelic status for ENU-induced tumors indicated that at least some of these tumors can form without complete deletion of the Apc⁺ allele. To identify more subtle Apc mutations, intestinal tumors from ENU-treated B6 Min/⁺ mice were examined for somatic Apc mutations by use of a IVSP assay described previously that specifically detects Apc truncation mutations (32, 42, 43). Tumors were first screened for Apc allelic loss with the quantitative PCR assay, and tumors that retained the Apc⁺ marker (Apc⁺/Apc Min > 0.30) were subsequently screened for Apc truncations. Because the Apc truncation assay is incompatible with nucleic acid prepared from formalin-fixed tissue, we used frozen tissue samples for these experiments. In one set of experiments, intestinal tumors and normal intestinal epithelial samples were dissected from B6 Min/⁺ mice and quickly frozen in OCT compound. Samples were then sectioned, approximately every tenth section was collected for histologic analysis, and the rest of the sections were used for DNA preparation.

Sixty-one percent (55 of 90) of the tumors collected in this fashion from B6 Min/⁺ mice treated with ENU at 8–19 days of age (mean age, 15.2 days) were classified as retaining Apc⁺. Twenty-six of these tumors were collected from the small intestine, whereas the other 29 tumors were from the colon. The average (±SD) Apc⁺/Apc Min ratio for the 55 tumors that retained the region of Apc⁺ tested was 0.48 ± 0.11. The average (±SD) ratio for the 35 tumors with Apc⁺ loss was 0.17 ± 0.07. The average (±SD) ratio for 18 normal intestinal tissue samples collected from these ENU-treated Min/⁺ mice was 0.55 ± 0.10.

It is unclear why the ratio for the normal tissue controls for the OCT-embedded and freshly frozen samples (see below) was lower than observed for formalin-fixed normal tissue controls (Table 1 and Ref. 31). A similar discrepancy has also been observed in other experiments involving fresh versus formalin-fixed intestinal tissue samples (A. R. S., unpublished observations). However, the average Apc⁺/Apc Min ratio for the tumors classified as showing allelic loss from both the OCT-embedded and freshly frozen samples fell below that for the normal tissue controls by greater than 4 SDs. In contrast, the average ratio for the tumors classified as retaining Apc⁺ fell within 1 SD of the average control ratios.

Of the 55 tumors from these ENU-treated mice that retained the Apc⁺ allelic marker, 46 were screened by IVSP for truncations in segment 2 of Apc (approximately covering codons 680–1230). Ten
truncations were identified in this region (Fig. 1). Seven of these truncations were found in colon tumors, and three occurred in tumors from the small intestine. The simultaneous presence of the truncated polypeptide from the Min allele indicates that the novel truncations had occurred in the Apc+ allele (Fig. 1). For the remaining 36 tumors that did not have truncations in segment 2, 20 were also screened for segment 3 (approximately covering codons 765–1690), and 9 were screened for segments 3 and 4 (approximately covering codons 1550–2270). No truncations were identified in any of these 36 samples.

The specific mutations responsible for 6 of the 10 truncations were identified by sequence analysis of Apc (Table 2; samples not marked with an asterisk). All of these mutations were single base pair substitutions that resulted in nonsense mutations (Table 2). For the remaining four samples with truncations, Apc sequencing was either not successful or not possible because of limited sample DNA. No somatic Apc truncations were observed in control samples obtained from normal intestinal epithelium from ENU-treated Min/+ mice or from tumor and normal tissue samples from untreated Min/+ mice (data not shown). Analysis of H&E-stained sections revealed no histological differences between intestinal tumors with Apc+ loss and tumors with Apc+ retention, either with or without accompanying Apc truncation (data not shown).

Primarily owing to difficulties with RT of RNA obtained from OCT-embedded samples, the entire ORF of Apc could not be examined for truncations in this set of samples. To examine the entire ORF of Apc, a third set of tumor samples was collected. In this experiment, tumor and normal intestinal samples were dissected from B6 Min/+ mice, and individual samples were cut in half for separate preparation of DNA and RNA (see “Materials and Methods”).

Sixty % (45 of 70) of the tumors collected in this fashion from B6 Min/+ mice treated with ENU at 10–13 days of age (mean age, 11.7 days) retained the Apc+ allelic marker. Eleven of these tumors were collected from the small intestine, whereas the other 34 tumors were from the colon. The average (±SD) Apc+/ApcMin ratio for the 45 tumors with Apc+ retention was 0.50 ± 0.12. The average (±SD) ratio for the 30 tumors with Apc+ loss was 0.12 ± 0.08. The average (±SD) ratio for 28 normal intestinal tissue control samples was 0.52 ± 0.08.

Fifteen Apc truncations were identified from the set of 45 tumors that retained Apc+. All but one of these truncations occurred in tumors from the large intestine. Thirteen of these 15 truncations were found in segment 2 of Apc, whereas the other 2 truncations were located near the end of segment 1 (approximately covering codons 1–850). The mutations responsible for 3 of these 15 truncations were identified by sequence analysis of Apc (Table 2; samples marked with an asterisk). All three were single base pair substitutions resulting in nonsense mutations. For the remaining 12 samples with truncations, Apc sequencing was either not successful or not possible because of limited sample DNA.

The entire ORF of Apc was analyzed by IVSP for 12 of the remaining 30 tumors, and no truncations were found (data not shown). For the other 18 tumors, the entire ORF of Apc could not be analyzed by IVSP, primarily owing to difficulty in analysis of segment 1. However, segment 2 was analyzed for all of these 18 tumors with no truncations identified. Furthermore, all of exon 15 (segments 2–5) of Apc was examined for 7 of these 18 tumors, again with no truncations observed (data not shown).

All of the 25 truncations that we have identified would terminate Apc approximately between amino acids 700 and 1215 (Fig. 2). The nine somatic nonsense mutations that were successfully sequenced lied between codons 971 and 1197 of Apc. Three of these nine mutations occurred in a tract of sequence between nucleotides 3564 and 3573 of Apc that reads 5'-CTCAGAAAA 3'. These three mutations (which occurred at the underlined Cs, with two of the three mutations occurring at the same C) consist of one tumor with a C/G→T/A (Ser→stop, amino acid 1189) at nucleotide 3566 and two separate tumors with C/G→T/A (Gln→stop, amino acid 1190) changes at nucleotide 3568. Furthermore, 9 of the 25 truncated Apc products produced bands of very similar size by SDS-PAGE. Although only five of the nine mutations were identified by sequence analysis, the IVSP results suggest that all nine would terminate Apc approximately between amino acids 1100 and 1200.

Analysis of Intestinal Tumors from Min/+ Mice for ras Mutations. The status of the ras oncogene in intestinal tumors from Min/+ mice was determined by sequence analysis. Nine intestinal tumors

![Fig. 1. IVSP assay of segment 2 of Apc for truncation mutations in tumors from ENU-treated B6 Min/+ mice. Lanes B6 and MIN. analysis of control genomic DNA from B6 Apc+/+ and B6 ApcMin mice, respectively. The other six lanes represent analysis of intestinal tumors from ENU-treated B6 ApcMin mice. The full-length product from segment 2 of Apc (approximately covering codons 680–1230) is approximately 62,000 (M.). The polypeptide product resulting from truncation at the Min mutation (codon 850 of Apc) is approximately 19,000 (M.). Arrow, a nonspecific background band. Lanes marked with an asterisk display truncated products (see Table 2).](image-url)
12 or 13 H-ras mutations were found in two of the nine tumors (Table 3). The sequence of H-ras codons 12 and 13 in the remaining seven tumors could not be unambiguously determined owing to high background signal. Control samples from normal intestinal tissue from these (AKR × B6)F1 Min/+ mice exhibited wild-type sequence for codons 12, 13, and 61 for both K- and H-ras (data not shown). We also examined the status of K-ras in 10 of the 12 intestinal tumors from ENU-treated B6 Min/+ that retained the Apc2 allele and that did not contain truncations in any part of the ApC ORF, as tested by IVSP. The other two tumors could not be tested due to limited sample DNA. No codon 12, 13, or 61 K-ras activating mutations were identified in any of these 10 tumors (data not shown). These results indicate the mutational activation of K- or H-ras is not a common event in the formation of intestinal adenomas in Min/+ mice or their precarcinoma progression.

DISCUSSION

Spontaneously arising intestinal tumors in B6 Min/+ mice lose the wild-type allele of Apc, most likely through a mechanism involving whole chromosome loss (31, 32). The intestinal tumor multiplicity of Min/+ mice can be dramatically increased by somatic mutagenesis with the direct-acting alkylating agent ENU (36). We have taken advantage of this mutagenesis result to perform a detailed investigation of the somatic mutational mechanisms involved in intestinal tumor formation in Min mice.

Somatic ENU treatment of B6 Min/+ mice at 5–35 days of age gave rise to a population of tumors that retained the Apc2 allele tested by quantitative PCR assay (Table 1). For mice treated at either 15–19 or 30–35 days of age, nearly all ENU-induced tumors were predicted to retain Apc2. Treatment at the other ages examined resulted in a mixed population of ENU-induced tumors in which some had lost the Apc2 allele and others had not (Table 1). We determined that at least 25 of the 100 tumors with Apc2 retention had acquired somatic Apc truncation mutations. All of these truncations occurred proximal to codons 700 and 1215 of Apc. The nine nonsense mutations we identified by sequence analysis were located between codons 971 and 1197. Four of these mutations occurred between codons 1189 and 1197 with a C→T transition at codon 1190 found in two separate tumors (Table 2). Only 4 of the 25 truncations identified were in tumors from the small intestine. This may be owing to the fact that overall, more colon tumors were screened for mutations and/or that it may be more difficult to detect truncations in tumors of the small intestine, where there is an increased likelihood of introducing normal tissue contamination during sample collection.

Each truncated Apc allele found in tumors from ENU-treated mice would encode a product lacking several potential Apc functional

Fig. 2. Location of somatic Apc truncation mutations found in intestinal tumors from ENU-treated B6 Min/+ mice relative to binding domains identified in human APC. The Min mutation is located at codon 850 of Apc (30). The locations of potential Apc functional domains are indicated. The amino acids of Apc corresponding to each domain are as follows: APC homodimerization, 1–171 (15, 16); constitutive β-catenin binding, 1020–1169 (19, 21); kinase-regulated β-catenin binding, 1342–2075 (20); microtubule association domain, 2143–2843 (17, 18); EBl association domain, 2560–2843 (61); discs large gene association domain, 2771–2843 (62). The human APC MCR covers codons 1286–1513. Approximate regions where truncation mutations were found in intestinal tumors from ENU-treated B6 Min/+ mice. All of the truncations identified occurred proximal to the human Apc MCR. Polypeptides produced from these mutant alleles would retain the homodimerization domain and, in some cases, at least part of the constitutive β-catenin-binding domain.

Fig. 3. Photograph of an H&E-stained section of a dysplastic small intestinal adenoma from an untreated (AKR × B6)F1 Min/+ mouse. This tumor has become locally invasive (arrow) and contains regions of carcinoma in situ (not visible at this magnification). This tumor had lost the Apc2 allele (Apc+/ApcMin = 0.13) but was wild type at codons 12, 13, and 61 for both K- and H-ras. Bar, 200 μm.

Table 3 Summary of ras mutational analyses from (AKR × B6)F1 Min/+ mice

<table>
<thead>
<tr>
<th>Tumor sample</th>
<th>K-ras 12/13</th>
<th>H-ras 12/13</th>
<th>H-ras 61</th>
</tr>
</thead>
<tbody>
<tr>
<td>D3543</td>
<td>+</td>
<td>ND</td>
<td>+</td>
</tr>
<tr>
<td>D3557</td>
<td>+</td>
<td>ND</td>
<td>+</td>
</tr>
<tr>
<td>D3559</td>
<td>+</td>
<td>ND</td>
<td>+</td>
</tr>
<tr>
<td>D3839</td>
<td>+</td>
<td>ND</td>
<td>+</td>
</tr>
<tr>
<td>D3845</td>
<td>+</td>
<td>ND</td>
<td>+</td>
</tr>
<tr>
<td>D3847</td>
<td>+</td>
<td>ND</td>
<td>+</td>
</tr>
<tr>
<td>D3851</td>
<td>+</td>
<td>ND</td>
<td>+</td>
</tr>
<tr>
<td>D4014</td>
<td>+</td>
<td>ND</td>
<td>+</td>
</tr>
<tr>
<td>D4015</td>
<td>+</td>
<td>ND</td>
<td>+</td>
</tr>
</tbody>
</table>

*+, identification of wild-type sequence at the indicated codons (12, 13, or 61) for either K- or H-ras. No ras mutations were identified in any of the tumors examined.

ND, not determined.
domains (Fig. 2). In addition to the binding domains contained in the COOH-terminal 700 amino acids of Apc, the kinase-regulated β-catenin-binding domain would also be absent from the products of each of these mutant alleles. However, of the nine alleles in which the specific mutation was identified by sequencing, only two would be missing all three of the 15 amino acid repeats that comprise the constitutive β-catenin-binding domain. All of the truncations would also retain the putative Apc homodimerization domain. We do not know whether the binding domains in the products from these truncated alleles are functional, or whether these mutant alleles are expressed in vivo. However, an analysis of human cell lines with known APC mutations suggested that APC polypeptides produced by truncation mutation beyond codon 715 are often stably expressed (46).

Approximately 95% of somatic APC mutations in FAP tumors occur in the MCR between codons 1286 and 1513 (5–7). In contrast, about 77% of somatic mutations in sporadic tumors are located in this region (4, 5). It has been proposed that the higher incidence of somatic APC mutations in the MCR in FAP tumors relative to sporadic tumors is due to the fact that germ-line APC mutations are broadly distributed over the first half of the gene (4). This suggestion is based on an hypothesis that tumor formation is induced more efficiently when at least one allele of Apc is mutated in the MCR (4). All of the truncations we identified in tumors from ENU-treated B6 Min/+ mice occurred proximal to the human MCR. Since the Min mutation is located in codon 850 of Apc, all of the tumors with ENU-induced truncations, as well as tumors with complete Apc− allele loss, have neither allele of Apc mutated in the MCR. The truncated product of the ApcMnt allele is expressed in both normal intestinal epithelial cells as well as in intestinal tumor cells from B6 Min/+ mice (47). This truncated polypeptide contains the homodimerization domain but lacks all of the other known binding domains of Apc (Fig. 2). Regardless of whether the ApcMnt allele retains any functional activity, there are two likely explanations for the location of the ENU-induced Apc truncations we observed. One possibility is that somatic mutation approximately between codons 700 and 1215 leads to unstable or unexpressed polypeptides. If these polypeptides are unstable or not expressed, these mutant alleles would be functionally equivalent to the Apc− loss seen in tumors from untreated mice. This would contrast with the analysis of human APC mutations that showed that polypeptide products resulting from truncation after codon 715 are stably expressed (46). If these truncated alleles are expressed, the truncations we observed may indicate that selective removal of both copies of all of the Apc-binding domains beyond amino acid 1215 enhances the likelihood for intestinal tumor formation in Min/+ mice.

Alkylation agents such as ENU are known to modify preferentially particular residues within DNA (48). In addition, the frequency of ENU-induced mutations can be influenced by the sequence surrounding the modified base (49, 50). Transitions involving G/C→A/T or A/T→G/C and transversions involving A/T→T/A appear to be the most prevalent type of ENU-induced mutation in mammalian cells, particularly when the guanine is preceded by a purine (49, 51–54). No definite pattern of mutation was observed in the nine nonsense mutations we identified. Transition and transversion mutations involving C/G→T/A, T/A→A/T, and C/G→G/C were detected (Table 2). Interestingly, six of the nine mutations occurred just prior to an adenine-rich stretch of sequence (Table 2). This type of sequence specificity has not been reported previously for alkylation-induced mutations. However, in a recent study of human intestinal tumors that demonstrated genomic instability owing to DNA replication error (RER), 49% of identified APC mutations occurred within poly(A) tracts (12). For our results, it is unclear whether the 3' poly(A) sequence can enhance the ability of preceding nucleotides to be alkylated and/or affect the ability of such alkylated residues to be repaired. Speculation about the specificity of these ENU-induced mutations needs to be interpreted with caution. In these experiments we could only detect Apc mutations that result in Apc truncation, thereby introducing an inherent bias in the types of mutations observed. In addition, it is possible that the ability to identify heterogeneous mutations unambiguously can be influenced by the surrounding DNA sequence.

Despite the fact that ENU is believed primarily to cause point mutations, some ENU-induced intestinal tumors showed Apc− loss (Table 1). Because the Apc allele loss assay that we used examines only a 155-bp region of the gene, we cannot discern whether this loss represents internal Apc deletion, regional deletion, or whole chromosome loss. There are several possible explanations for the Apc− allele loss observed in ENU-induced tumors. One hypothesis is that this allele loss results from global ethylation damage caused by ENU. Such damage may lead to higher rates of mitotic nondisjunction and intestinal tumor formation would subsequently select for the nondisjunction events affecting Apc−. Another possibility is that ENU induces mutations at another locus (or loci) that lead, in turn, to genomic instability and consequent Apc− loss. Finally, it is possible that mutation of another locus (or loci) is also necessary for tumor formation. In this scenario, Apc− allele loss may occur before ENU treatment. ENU would therefore not cause allele loss but rather induce mutation at the other locus (or loci) that synergizes with ApcMin hemizygosity in tumor formation.

We identified 12 intestinal tumors from ENU-treated B6 Min/+ mice that retained the region of Apc− tested by quantitative PCR assay and were not found to have Apc truncation mutations in any part of the Apc ORF. One obvious explanation for this result is that some of these tumors may have acquired Apc missense mutations. However, only a relatively small number of missense mutations have been reported from extensive examination of APC, including sequence analysis of the entire Apc ORF (5, 6, 8). Another possibility is that the IVS assay does not detect 100% of Apc truncation mutations and/or that these tumors may have acquired somatic mutations that alter the expression of the Apc protein or transcript. Detailed analyses of APC/Apc expression in normal as well as neoplastic intestinal tissue are clearly needed to address this issue further.

For analyses involving either OCT-embedded or fresh frozen tumors, there is also a concern with interference in the allele loss assay due to normal cell contamination. Indeed, in an analysis of dissected tumors from a control population of untreated B6 Min/+ mice that were frozen in OCT and processed in the same manner as tumors from ENU-treated Min/+ mice, 2 of 15 (13%) had an Apc−/ApcMnt ratio greater than 0.30 (data not shown). Therefore, a small number of dissected tumors from ENU-treated B6 Min/+ mice are likely to have been incorrectly classified as retaining the wild-type Apc allele, on the basis of the quantitative PCR assay.

A final possible explanation for the lack of Apc truncations in these 12 tumors is that a multihit tumor formation pathway exists that is independent of a second mutation to the remaining Apc− allele in Min/+ mice. Even though mutation of Apc is the most frequently observed somatic mutation in human intestinal tumors, no detailed study has found somatic APC mutation in 100% of FAP tumors (5, 7). It seems reasonable to consider a mechanism in which mutation of another locus (or loci) in combination with heterozygosity at Apc/Apc may be sufficient for some cases of intestinal tumor formation. The discovery of multiple potential binding domains within APC enhances the plausibility that mutation of an allele of one of these APC binding partners, in conjunction with heterozygosity at Apc, would allow for tumor formation. Such a mechanism contrasts with the one-locus, two-hit model for tumor suppressor gene activity (55, 56). It should be noted that the mathematical model first proposed by Knudson (57)
not require that the two mutations occur in the two alleles of the same gene.

One possibility for such a two-locus, two-hit model is suggested by a recent finding that ApcMin and activated ras may cooperate in tumorigenesis (35). These experiments were made possible by the creation of an SV40 large T conditionally immortalized cell line from the normal intestinal epithelium of B6 Min/+ mice (58). Cells from Min/+ mice that also expressed an exogenous copy of activated H-ras were found to be capable of forming tumors in nude mice within 17 days of injection (35). Cells from Apc+/+ mice that expressed the same activated H-ras allele did not form tumors in nude mice until 90 days after injection. Intriguingly, one of the tumors arising from the Min-specific cell line retained the region of Apc- tested by this group (35).

We did not find any codon 12, 13, or 61 K-ras mutations in 10 of the 12 intestinal tumors that retained the Apc- allelic marker and that did not have truncation mutations in the Apc ORF. This result argues against a two-locus, two-hit model for intestinal tumor formation involving ApcMin and activated ras.

Studies of human intestinal tumors of various histological stages indicate that activation of K-ras in particular is correlated with the development of larger, more dysplastic adenomas (27, 28). However, a significant percentage of human intestinal cancers do not contain any detectable ras mutations (27, 28). To begin to address the role of ras in intestinal tumor progression in Min mice, we took advantage of the genetic modifier system identified for the Min phenotype (37, 45). (AKR × B6)F1 Min/+ mice develop fewer tumors and, consequently, live longer than B6 Min/+ mice (37, 45). Due to this increased lifespan, some intestinal tumors in these F1 mice become locally invasive and can develop regions of carcinoma in situ (45). We used these relatively advanced tumors to examine the role of ras in intestinal tumorigenesis in Min mice. No codon 12, 13, or 61, K- or H-ras mutations were identified in nine dysplastic adenomas from (AKR × B6)F1 Min/+ mice, Table 3). Although the number of relatively advanced tumors analyzed here is small, our results indicate that activation of the ras oncogene is not an important event in adenoma formation or early progression in Min/+ mice. Similarly, Smits et al. (59) recently reported a lack of detectable ras mutations in intestinal tumors from mice with a targeted mutation at codon 1638 of Apc. If ras activation is involved in Min-dependent tumorigenesis, it may be involved in a different step in progression than has been reported for human intestinal oncogenesis.

Min/+ mice that are also homozygous for a targeted mutation in the Msh2 DNA mismatch repair gene have been reported to develop approximately 3.5-fold more intestinal tumors than Min/+ mice that are either wild type or heterozygous at Msh2 (60). Quantitative PCR analysis of the Apc allelic status in tumors from Min/+ Msh2−/− mice revealed that the majority of tumors from these mice had not lost the Apc− allele (60). Unlike our observation of Apc− loss in ENU-induced tumors, all of the additional tumors caused by Msh2 deficiency in Min/+ mice appeared to have retained the Apc− allelic marker. However, of 15 intestinal tumors from Min/+ Msh2−/− that were analyzed immunohistochemically, all were reported to lack staining with an antibody specific for the COOH-terminal 20 amino acids of Apc (60). This result suggests that loss of normal Apc function is necessary for intestinal tumor formation in Min/+ Msh2−/− mice. DNA mismatch repair deficiency caused by Msh2 mutation does not appear to lead to Apc− loss by deletion or chromosome loss, as we observed for some ENU-induced tumors from Min/+ mice. It will be interesting to determine whether tumors from Min/+ Msh2−/− mice have acquired somatic Apc truncation mutations and, if so, whether these truncations occur in the same region of Apc that we have reported here for ENU-induced Apc truncations.

We have used somatic ENU mutagenesis to demonstrate that intestinal tumor formation can occur in Min/+ mice without complete deletion of the wild-type Apc allele. Our results indicate that some ENU-induced tumors have lost the Apc− allele. Analysis of ENU-induced tumors that retained the Apc− allelic marker revealed that at least 25% of these tumors acquired Apc truncation mutations that resemble the type of somatic ACP mutations often observed in human intestinal tumors. However, the location of these somatic mutations within the Apc gene is distinct from the most frequently observed human ACP mutations. We also found 12 tumors in which no somatic Apc mutation could be detected by either of the two techniques. Finally, we have found that activation of the ras oncogene does not seem to be a common event in the formation or early progression of adenomas in Min/+ mice.

ACKNOWLEDGMENTS

Natalie Borenstein, Linda Clipson, Darren Katzung, Melanie McNeely, and Jake Prunuske provided expert technical assistance with these experiments. Histological preparations were performed with the assistance of Harlene Edwards, Paula Frindt, Dana Olson, and Jane Weeks. We thank Dr. Henry Pitot for assessment of histological samples. We also thank Drs. Karen Gould and Ilse Riegel for critical review of the manuscript.

REFERENCES

12. Joslyn, G., Richardson, D. S., White, R., and Alber, T. Dimer formation by an

